


In this talk, we discuss new result on Sobolev orthogonal polynomials in $W_2^r$ for all positive integer $r$ and approximation in the Sobolev space on the unit ball in $\mathbb^d$, and describe sharp estimate for the error of best approximation in the Sobolev space and its application in the spectral Galerkin methods. For this purpose, it is necessary to study orthogonal structure of the Sobolev space $W_2^r$ that consists of functions whose derivatives up to $r$-th order are all in $L^2$. Título: Approximation and Sobolev Orthogonal Polynomials on Unit BallĪbstract: For the spectral Galerkin method in numerical solution of partial differential equations, we need to understand the approximation by polynomials in the Sobolev spaces. Lugar: Seminario 1ª Planta, Instituto de Matemáticas IEMath-GR, Uiversidad de Granada Support of scientific activities at IMAG (permanent call)Įl Grupo de Teoría de Aproximación y Polinomios Ortogonales organiza el Seminario cuyos datos se detallan a continuación:.Equity, diversity and inclusion recommendations.ICMAT-IMAG Doc-Course in Functional Analysis.Doctoral Summer School in Conformal Geometry.Seminario de Ortogonalidad y Aplicaciones.Ciclo de Conferencias Estadística y Ciencia de Datos Patricia Román.
